
Engineered DNA Sequence Syntax Inspector
Timothy Hwei-Chung Hsiau and J. Christopher Anderson*

Bioengineering Department, University of California, Berkeley, California 94720, United States

ABSTRACT: DNAs encoding polypeptides often contain design errors that cause experiments to
prematurely fail. One class of design errors is incorrect or missing elements in the DNA, here termed
syntax errors. We have identified three major causes of syntax errors: point mutations from
sequencing or manual data entry, gene structure misannotation, and unintended open reading frames
(ORFs). The Engineered DNA Sequence Syntax Inspector (EDSSI) is an online bioinformatics
pipeline that checks for syntax errors through three steps. First, ORF prediction in input DNA
sequences is done by GeneMark; next, homologous sequences are retrieved by BLAST, and finally,
syntax errors in the protein sequence are predicted by using the SIFT algorithm. We show that the
EDSSI is able to identify previously published examples of syntactical errors and also show that our
indel addition to the SIFT program is 97% accurate on a test set of Escherichia coli proteins. The
EDSSI is available at http://andersonlab.qb3.berkeley.edu/Software/EDSSI/.
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Designed DNAs encoding polypeptides often contain
design errors that cause experiments to prematurely

fail; to address this concern, we have developed a computa-
tional tool that detects likely syntactic design errors in a genetic
construct. DNA sequences are typically designed from prior
knowledge of biological phenomena, but implementation of
novel biological functions is error-prone.1 Although computa-
tional design tools such as GenoCAD25 and Eugene22 exist to
aid in the design of genetic circuits based on known rules,
experimental failure is still common. Discovery of the cause of
the error requires some experimental “debugging”, and typically
only after many alternative hypotheses have been ruled out is
the problem traced to incorrect or missing features in the
designed DNA.
Previously, we have reviewed the many challenges that

genetic engineers face.1 One class of challenges is incorrect or
missing elements in the DNA, here termed syntax errors. These
errors can be predicted beforehand and corrected in the design
stage. However, in many experiments today, these errors are
discovered during the debugging stage after an experiment has
failed.
Syntax errors that occur in polypeptide-encoding DNAs

result in a nonfunctional protein or cause unintended
interactions in the early, proof-of-concept stages of a project.
Such a result can then be interpreted as a total failure of the
experiment rather than an artifact caused by syntax errors. We
have identified three major sources of syntax errors and the
corresponding manifestations: (1) sequencing errors in the
primary data that lead to point mutations or truncations, (2)
wrong gene structure annotations, typically of the gene start site
that lead to truncated proteins, and (3) unanticipated open
reading frames (ORFs), which give rise to unintended
polypeptides. These syntax errors are shown in Figure 1. We
give examples for these three types of syntax errors and present
an analysis pipeline that aids in the identification of such errors.

Point Errors from Sequencing or Manual Data Entry.
Sequencing errors from Sanger technology in the 1990s were
estimated at 0.1%.2 Although next-generation sequencing can
compensate for higher error rates in individual reads by using
information from overlapping reads, finished contigs were
nevertheless estimated to have an error rate of 0.33% as of
2009.3 Additionally, error rates are unequally distributed across
sequenced genomes and fluctuate on the basis of both local
sequence composition and the specific sequencing technology
employed. Sequencing errors can cause nonsynonymous
mutations and truncations of a gene by introducing erroneous
start or stop codons. Additionally, manual sequence editing has
the potential to introduce this type of error and other types.
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Figure 1. Causes of syntactical error in genetic designs. (A) Point
errors can result from erroneous sequencing or manual data entry. (B)
Structural misannotation caused by late start sites can result in N-
terminal truncations. (C) Unnannotated ORFs can result in the
expression of unintended genes.
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Real World Example. Engineers refactored a Klebsiella
nitrogen fixation gene cluster to remove unwanted regulation
by synthesizing sequences derived from NCBI entry X13303.1.4

The synthesized genes were nonfunctional when tested by
knockout complementation, and the failures were traced back
to nonsynonymous mutations due to erroneous sequencing
data in the original submission. Identifying the problem and
correcting it by resequencing the source DNA consumed 3
months.5

Gene Structure Misannotation. While genome annota-
tion has rapidly developed, predicted gene structures are still
imperfect, and many erroneous entries exist in the databases. As
one example, automated gene annotation software misanno-
tates at least 10% of prokaryotic gene start sites.6,7 Similarity-
based analyses of genome sequences have identified gene-
calling errors as high as 15%.8 The gold standard for gene start
site identification is experimental validation by N-terminal
sequencing, which is sparse and not collected in a central
database. While there have been efforts to improve annotation
of gene start sites,9 many of the entries in nr, NCBI’s
nonredundant protein database, still have erroneous annota-
tions. Gene prediction in eukaryotes is nontrivial as the
software must also accurately predict introns.10 However,
programs such as AUGUSTUS can now incorporate “hints”
from diverse experimental sources such as RNA-seq, genomic
conservation, or tandem mass spectrometry to improve
predictions.24 In general, gene structure misannotation can
also happen when users manually infer the incorrect gene
structure.
Real World Example. The invF gene was used in a design for

genetic logic gates in Escherichia coli; however, because of an
incorrect annotation, the synthesized ORF was truncated.11

This error is particularly common when refactoring overlapping
ORFs or when dealing with ORFs that have many methionines
near the start (e.g., β-lactamase).
Unintended ORFs. Overlapping ORFs have been found in

all domains of life. On average, 27% of genes in prokaryotic
genomes are involved in at least one overlap [Lillo], and
internal or partial ORFs can occur when sequences are copied
from their native context. During transfer of a target ORF to a
new context, annotation of the overlapping ORF may be
forgotten or discarded. Additionally, ORFs expressed outside of
their native context can contain unintended translational
signals, such as a ribosomal binding site, that lead to production
of truncated protein products.13

Real World Example. A chimeric gene composed of rabbit
structural capsid protein VP60 fused to cholera toxin B subunit
was not stable in E. coli hosts.14 Constructing frame-shift
mutations versions of the gene did not alleviate plasmid
instability. The true cause of instability was found to be due to
the use of nonstandard codons, which resulted in a translational
start signal in a different frame and expression of a leucine-rich
ORF. The leucine-rich polypeptide was hypothesized to insert
into the membrane and was shown to be the cause of toxicity.
Errors in designed protein-coding sequences are predictable

and preventable and cause unnecessary experimental delays.
Thus, there is a need for software tools that decrease risk of
failure by identifying potential errors in a genetic design. In this
article, we report the Engineered DNA Sequence Syntax
Inspector (EDSSI), a new tool that uses sequence conservation
to identify primary sequence syntax errors in the user’s protein-
coding sequence. We focus on protein-coding syntax for genes
from any source being expressed in bacteria, to facilitate the

common practice of placing existing protein-coding sequences
under engineered transcriptional regulation. Additionally,
protein-coding syntax is much better understood than non-
protein-coding syntax and poses a more tractable problem. In
our tool, users input a DNA sequence, protein-coding regions
are detected, and a homology-based approach is used to predict
errors. Users can then view the syntax error analysis on the
results page. By quickly allowing syntax errors to be considered
or discarded as a hypothesis in troubleshooting experiments,
this tool allows a more rational design of protein-coding
sequences.

■ RESULTS AND DISCUSSION
Here we present the EDSSI, a sequence analysis tool that
inspects input DNA for potential syntax errors in the protein-
coding sequences when expressed in a bacterial context. By
combining gene prediction, homologue retrieval, protein
sequence alignment, and mutational analysis software, the
EDSSI predicts one type of genetic design error. The EDSSI is
available at http://andersonlab.qb3.berkeley.edu/Software/
EDSSI, and an API service is available at http://andersonlab.
qb3.berkeley.edu/Software/EDSSI/api.html. The source code
is available at https://github.com/hsiaut/EDSSI under the BSD
license.

Performance. The EDSSI analysis pipeline fits well into
common design workflows. The two BLASTs are the main
bottlenecks of the pipeline, so results for both are cached to
improve performance for commonly queried sequences. The
protein BLAST searches are also conducted in parallel to
accelerate performance. We timed the analyses for 20 E. coli
genomic loci and found that on average each kilobase takes 3
min to run.

Sequence Inspector Reports. The EDSSI generates a
report that contains a graphical representation of the input
sequence. Detected ORFs are drawn as arrows and are labeled
by a text annotation. The ORF labels can be toggled on and off
by a button at the top right of the display. ORFs are color-
coded by the level of evidence: ORFs with exact database
matches are colored green, ORFs with database hits but no
exact match orange, and ORFs with no database hits black.
Errors in the protein sequence are drawn as red vertical bars.
Each ORF links to its corresponding multiple-sequence

alignment. The sequence of the predicted ORF, or the input
sequence, is given as the first sequence in the alignment.
Subsequent protein sequences are ordered by similarity. The
entire alignment is generated by JavaScript and also can be
dynamically resized.
Predicted errors in the input sequence are depicted as color-

coded vertical bars in the multiple-sequence alignment, with
more likely errors encoded with a deeper shade of red. The
amino acid characters are also color-coded to facilitate visual
comparison.
Several files from each analysis are available for download.

The complete output data are available as a JSON download to
facilitate interoperability with automated genetic design
software. The aligned protein sequences are available in a
FASTA file. The conserved domain and homologue searches
produce links to relevant, indexed abstracts in PubMed that
users can read. The analysis pipeline also produces an
annotated GenBank file that can be read by popular DNA
editors such as ApE, LaserGene, etc.
A literature search was conducted to find and evaluate

underlying software for the EDSSI. Genemark.hmm was found
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to correctly predict 93.5% of experimentally verified genes
across a wide range of bacteria and compares favorably with
other gene callers.21 We found Genemark.hmm to perform well
on our plasmid-sized inputs, while some of the other software
required more than 100 kb as a minimal input size because they
were designed primarily for annotating genomes. SIFT has
been benchmarked against a large set (thousands of
substitution mutants) of functional data from nearly complete
mutagenesis of LacI, HIV protease, and T4 lysozyme. SIFT has
false positive rates of 20% and false negative rates of 31%.18

Finally, to test our indel addition to the SIFT analysis workflow,
we selected ORFs from the EcoGene Verified Protein Starts set

(922 genes)26 containing an internal methionine, generated the
truncated genes, and ran them through the EDSSI. Truncated
sequences may result in a false negative analysis if there are
sufficient shorter, erroneous protein sequence entries in NCBI
nr. However, the EDSSI was able to predict 97% of the
truncated protein sequences.

Three Illustrative Examples. To demonstrate the utility of
the EDSSI, we examined the three published examples of syntax
errors discussed above. We first syntax-checked synthetic
construct pCTXvp60.14 The leucine-rich ORFs in pCTXvp60,
including the toxicity causing ORF238, were correctly identified
by the analysis. These artificial ORFs have no homologues and

Figure 2. Examples of the results page. (A) Extraneous ORFs detected in the pCTXVP60 example. The gray ORFs are the leucine-rich ORFs with
no homologues, while the two fusion partners are shown as orange ORFs. (B) Point mutations detected in GenBank entry X13303 used in the
study4 are displayed as vertical red bars on the ORF. (C) Analysis results of the truncated invF gene used in the study.11 The truncation is shown as a
vertical red bar at the 5′ end of the ORF and also highlighted in the multiple-sequence alignment.
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were therefore not identified by the conserved domain search.
As expected, artificial fusion protein CTXvp60, which lacks a
bacterial RBS, was detected as two separate ORFs as seen in
Figure 2A. However, knowing about the spurious ORF238
would likely have aided in troubleshooting the unexpected but
observed plasmid toxicity in E. coli.
We next examined the X13303.1 nif cluster from ref 4, and

the EDSSI predicted 13 errors. The nif S gene is shown in
Figure 2B as an example of how these point mutations are
displayed. During nif cluster resequencing, 18 nonsynonymous
mutations were found, of which eight agree with the ones found
by the EDSSI. In comparison, the two homologous nif clusters
found had only six predicted errors in the same 22 kb region.
Knowing about the predicted errors in the nif cluster sequence
would likely have aided in the debugging of the initial failed
experiment. The EDSSI also successfully identified the
truncation in the published invF construct (Figure 2C).
While some database entries share the same truncated
translation start site, the majority of entries have the genuine
start site. Knowledge of those entries would have alerted the
designers to the potential truncation.
Failed experiments are common in genetic engineering, and

there is a need for software tools that provide suggestions for
debugging these experiments. One common source of error is
the subtleties in the DNA syntax of the tested constructs.
Current practice relies on an implicit assumption that
annotations and sequence databases are correct. However, as
we have found in the published examples, those annotations
can mislead the engineer and can cause simple experiments to
fail. Via the creation of better tools for syntax checking and
semantic verification, such experiments will have a lower chance
of failure.
We used modern-day computer code editors as inspiration

when we created the EDSSI. Modern-day computer code
editors can find syntax errors or warnings before runtime,
allowing a faster debugging cycle. Similarly, our sequence
inspector will allow for upfront handling of errors or can
provide hypotheses for failed experiments. We envision that the
EDSSI could be useful to “sanity check” designed constructs
before experimental effort is spent, and as a hypothesis-
generation method when troubleshooting failed experiments.
Though there is no formal theory for how each side chain

position contributes to overall protein function, statistical
approaches for predicting deleterious mutations can provide a
means of prediction. By using the statistical techniques
pioneered by programs like SIFT, our EDSSI output correlates
with expert human analysis for the three published examples
and our synthetic test sequences. However, in the nif gene
cluster example, the sequence inspector did not identify all of
the nonsynonymous mutations found by resequencing. This
disparity is due to a false negative of the SIFT program, or
some of the mutated positions are tolerated. Empirical testing
on sequences substituted with each mutation for the desired
nitrogen fixation function could differentiate between the two
interpretations. The synthetic benchmarks suggest that the
ORF prediction and gap scoring algorithms can be used for pre-
experimental error prediction, while the amino acid substitution
scoring may be useful for hypothesis generation in postexperi-
ment debugging.
The EDSSI can be improved by inclusion of more data.

Analyses of rapidly evolving genes, such as endonucleases, or
unique gene sequences will return many errors because the
sequence inspector performs poorly when given few data

points. As more strains and individuals are sequenced, the
number of homologues for any given protein can be expected
to increase. Also, more proteomic data will allow precise
prediction of translation start sites. Integrating protein
structure, when available, into the analysis could also improve
predictions of effects of amino acid substitutions such as in the
PolyPhen prediction pipeline.19

For the biological engineer, the ability to rule out certain
designs before fabrication will have an important role in
allowing complicated designs.1,20 Already, with the right
information, software systems can check the validity of
designed logic gates22 and metabolic pathways.23 By addressing
one common aspect of failure in genetic engineering, this tool
will help move the practice closer to rational design.

■ METHODS
The sequence inspector workflow is illustrated in Figure 3. The
workflow consists of the following steps: sequence submission,
gene prediction, homologue search, alignment, scoring, and
display.

Bioinformatics Workflow. The sequence inspector
predicts genes in input DNA by using GeneMark.hmm and
NCBI’s Conserved Domain search (CD-search). The HMM
framework of GeneMark.hmm uses the statistical patterns of
nucleotides encoding proteins to predict likely genes.
Predictions of translational start sites are further improved by
incorporating a model of the ribosome binding site (RBS). CD-
search identifies nucleotide regions matching protein family
profiles.15 The protein family profile match regions are then
extended to the closest start and stop codon for a minimal gene
prediction. The predicted genes from the two approaches are
then merged if they overlap and are in the same frame.
The sequence inspector next searches for and retrieves

homologous protein sequences, aligns the sequences, and
scores the input sequence for syntax errors. To find protein
homologues, for each predicted ORF, the program uses a
BLAST search against the nonredundant (nr) protein database
to find closely related genes. Full-length protein sequences
identified by the BLAST search are retrieved, and the

Figure 3. Data analysis workflow. The user submits DNA sequences
through an online interface, which are then run through gene
prediction, homologue search, alignment, and scoring. Associated
programs or algorithms for each stage are shown.

ACS Synthetic Biology Research Article

dx.doi.org/10.1021/sb400176e | ACS Synth. Biol. 2014, 3, 91−9694



homologues are aligned using the MUSCLE aligner.16 The
alignment is scored using the SIFT algorithm.17 In brief, amino
acid distributions at each column are used to calculate a
normalized probability that the observed residue is correct.
Aligned columns with more variation are more likely to tolerate
substitutions than highly conserved positions. The standard
cutoff of 0.05 was used. Because SIFT ignores gaps in the input
alignment, we added a custom scoring function for the gapped
positions that uses a simple weighted vote.
Results are passed as a JavaScript Object Notation (JSON)

file and displayed using the JavaScript visualization library
RaphaelJS and a JavaScript multiple-sequence aligner viewer
developed in house. We use the ELink functionality provided
by NCBI to retrieve publications relevant to each protein
BLAST hit. Results from the analysis are output as an
independent JSON file, which is read and displayed by the
HTML/JS viewer.
Workflow Technical Details. Genemark.hmm version 2.8a

is run with the E. coli model and the -r option, which uses an
RBS model for start codon prediction. All other prediction
options were kept as default. The conserved domain search was
performed with the rpstblastn binary included in the BLAST+
package from the NCBI. Rpstblastn is run with an e value of 1
× 10−50. Outputs from Genemark.hmm and rpstblastn are
parsed by Python scripts to generate gene predictions for the
input DNA. Python scripts were developed in house and have
no dependencies.
After gene prediction, protein sequences are individually

queried against the nr database using BLASTp, and an e value
of 1 × 10−50 and up to 50 homologues are then retrieved.
MUSCLE is then called with all default options. To retain the
input order of the sequences, the stable.py script supplied with
MUSCLE is used to reorder the alignment. Because the stand-
alone SIFT binary does not accept gaps in the aligned FASTA
input, any alignment columns with a gap in the reference are
removed. Processed alignments are then analyzed using the
info_on_seqs SIFT binary (SIFT version 5.0.3). Program
default settings performed well on our test cases. Changing the
settings resulted in no change in the output or worse
performance (ORFs not called or errors not detected).
BLAST settings of up to 50 homologues were chosen to
limit excessive analysis times.
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